
144 communications of the acm | december 2011 | vol. 54 | no. 12

last byte

P
h

o
t

o
g

r
a

p
h

 b
y

 D
o

m
inic

 C

a
s

s
e

r
ly

DOI:10.1145/2043174.2043201		 Leah Hoffmann

Q&A
Scaling Up
M. Frans Kaashoek talks about multicore computing,
security, and operating system design.

directly to applications. Traditionally,
the kernel provides a fixed set of un-
changeable abstractions. For example,
you have a very complex, unchange-
able kernel interface like traditional
Unix systems, or you have a small,
unchangeable microkernel interface,
which defines a few carefully chosen
abstractions. An exokernel design al-
lows the programmer to define its own
operating system abstractions.

For its minimalism, it sounds almost
like an extreme version of microker-
nel design.

The main goal with a microkernel is
to make the kernel small. That was not
necessarily our goal. So, for example,
we would have been perfectly happy to
put a device driver inside the kernel if
we thought it was the right thing to do.

How did the project evolve?
We were able to build a prototype

that demonstrated the approach could

M. Frans K aashoek’s interest in com-
puting was sparked, like many others
in the field, by an early love for pro-
gramming. At Vrije Universiteit, he dis-
covered he could turn his hobby into a
career, and studied with MINIX creator
Andrew S. Tanenbaum before accept-
ing a professorship at Massachusetts
Institute of Technology’s Department
of Electrical Engineering and Com-
puter Science. Kaashoek has since
conducted wide-ranging research in
computer systems, including operat-
ing system design, software-based net-
work routing, and distributed hash ta-
bles, which revolutionized the storage
and retrieval of data in decentralized
information systems. He also helped
found two startups: Sightpath, a video
broadcast software provider that was
acquired by Cisco Systems in 2000, and
Mazu Networks, which was acquired
by Riverbed Technology in 2009. Kaas-
hoek was named an ACM fellow in 2004
and elected to the National Academy of
Engineering in 2006. Last year his work
was recognized with an ACM-Infosys
Foundation Award (see “Unlimited
Possibilities” in the June 2011 issue of
Communications).

You have said that your work on the
exokernel operating system, which en-
ables application developers to specify
how the hardware should execute their
code, was driven by intellectual curios-
ity. Can you elaborate?

We wanted to explore whether we
could build a kernel interface that de-
fines no abstractions other than what
the hardware already provides, and
that exports the hardware abstractions

work in practice. But I don’t think
there’s any direct technology transfer
from our ideas into products although
there was one startup that used our
code. The impact has been more indi-
rect. Academically, it influenced other
systems that were built afterward. On
the more commercial side, it also has
been credited in work on machine
monitors for handheld devices.

Operating systems design has become
such a partisan issue. What is your take
on it?

I have a pragmatic view. In research,
taking an extreme position is interest-
ing because it forces you to clarify your
thinking and solve the hard case. In
practice, I think people are going to
do whatever helps solve the particular
problems they have. If you look at a
monolithic kernel like Linux—I know
you can’t call it a microkernel system,
but some of the servers run as applica-
tions in user space and some run in the
kernel, and it really becomes shades of
gray. And some people draw this line
slightly differently than others. But if
the kernel is already working fine, why
change it?

Since your work on exokernels, you
have done several other projects on op-
erating systems design, in particular as
it relates to multicore computing.

You might say that multicore has
nothing to do with the operating system
because it is, in many ways, already in-
herently parallel; it provides processes
that can run on different cores in paral-
lel. But many applications rely heavily
on operating system services, particu-
larly systems applications like email
and Web servers. So if the operating
system services don’t scale well, those
applications can’t scale well, either.

So your work is focused on building
scalable operating systems.

Originally, we thought we would
have to write [continued on p. 143]

december 2011 | vol. 54 | no. 12 | communications of the acm 143

last byte

an operat-
ing system from scratch to figure it out,
which we did. Then we looked at our
findings and realized they should be
applicable to any standard operating
system. So, with a few of my colleagues
and students, we did a study to see how
much work would be necessary to scale
the Linux kernel to a large number of
cores. If you have enough manpower,
it’s certainly doable.

This is the system you built in which
eight six-core chips were used to simu-
late the performance of a 48-core chip.

Yes, indeed. There are a lot of inter-
esting problems to be solved, but my
general sense is that things are going
to evolve in the right direction, and that
there won’t be a point in time where we
have to throw everything away and start
over again.

Another insight to come out of that
work was that it can be difficult to iden-
tify the root cause of performance is-
sues. Is that what inspired your work
on MOSBENCH, a set of application
benchmarks designed to measure the
scalability of operating systems?

Yes, MOSBENCH came out of that
project. Typical benchmarks are just
application benchmarks, where all the
action is in the application itself. But
we needed a benchmark that included
a lot of system-intensive applications.
Otherwise, you don’t stress the operat-
ing system, and if you don’t stress the
operating system, it isn’t scalable by
default. So we collected several appli-
cations to stress different parts of the
operating system—essentially, it’s a
workload generator.

What conclusions has it led to so far?
The Linux kernel scales pretty well.

But there might be interesting future
problems. One direction is having the
operating system give you more control
over the caches in which the data lives.
The traditional view is that the cache is
hidden from the operating system and
the hardware just does its job of cach-
ing. In multicore, caches are spread
all around the chip, some close by and
others that are far away. There are cas-
es where you want control over where
the data is placed so you can get better
performance. Something else we’re
looking at are abstractions that allow

you to build operating systems that are
scalable by design, as opposed to scal-
ing every subsystem one by one. New
concurrent data structures that exploit
weak consistency semantics are anoth-
er direction.

You have also done work on systems se-
curity, using information flow control
to prevent the unauthorized disclosure
of data.

The idea is simple. Typically when
you build an application, and you want
to make it secure, you put a check be-
fore every operation that might be sen-
sitive. The risk is that you can easily
forget a check, which can then be ex-
ploited as a security vulnerability. We
tried to structure the operating system
in such a way that even if you forget
some of these checks, security is not
immediately compromised. The way
we do it is to draw a box around the op-
erating system and label all data. Then
we have a guard that checks whenever
data is being sent across the border to
make sure it’s going to the right place,
based on the data’s label.

Some of your other security research
focuses on making it easier to restore
system integrity after an intrusion. So-
called “undo computing,” for instance,
seeks to undo any changes made by an
adversary during the attack while pre-
serving legitimate user actions.

Let’s say you have a desktop, and you
discover it was compromised a couple
weeks after an attack. Then the ques-
tion is, How do you restore its integrity?
You could go back to a backup from

three weeks ago, when you know it’s
clean, and reinstall some pieces. But
that’s clearly a labor-intensive project.
Or you try to find all the bad code and
files, and remove them, which of course
is also labor intensive. There are some
automatic virus removers, but they’re
very specific to a particular virus.

What is your approach?
Here’s one direction my colleague

Nickolai Zeldovich and our students
are exploring: Once you’ve deter-
mined that an adversary sent bad
packets to your Web server, you know
everything that could be influenced
by those packets is suspicious, and
all the influenced actions must be
undone. We roll the system back to
before the attack happened, and roll
forward all the actions that were not
influenced by the adversary’s actions.
If everything works out correctly, you
will end up in a clean state, but you
will still have all the work that you did
in the last three weeks.

What if the actions of the adversary
are intermingled with the actions of
the user?

Undoing that intermingling and
keeping track of the dependencies re-
quires some reasonably sophisticated
techniques. Another aspect of the
problem is that you really don’t want
to replay or redo every operation. So
we have a bunch of clever observations
saying, well, this work or this operation
could never have been influenced by
the attacker’s actions, so therefore we
don’t have to redo them. We have some
encouraging results, but we’re still try-
ing to figure out whether we can make
this work in practice for heavily used
complex systems.

Do you have plans to do another startup?
I’m going to wait and see. It’s not

until the later stages of a project that
I think about whether it solves a real
problem that people have and, if so,
would it be worthwhile to start a com-
pany around it. One of the big advan-
tages of academia is that if you decide
the problem’s not interesting, you
can change. That’s a hard thing to do
in a startup.	

Leah Hoffmann is a technology writer based in Brooklyn, NY.

© 2011 ACM 0001-0782/11/12 $10.00

“One of the big
advantages of
academia is that
if you decide the
problem’s not
interesting, you
can change.
That’s a hard thing
to do in a startup.”

[cont inu ed f ro m p. 144]

